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INTRODUCTION 

INTERFACIAL activity generated between partially miscible 
liquids in some industrial systems can be responsible for 
significant enhancements in mass transfer rates. Considerme 
that thermal effects can be important in the generation 07 
interfacial activity. Perez de Ortiz and Sawistowski ]I] pro- 
posed a diffusion model for obtaining temperature and con- 
centration profiles as a function of time when partially mis- 
cible binary liquids are contacted at a planar interface. They 
obtained an analytical solution for temperature and con- 
centration protiles in both phases when considering a linear 
variatron of the heat of solution with concentration. This 
coupled dilfusion model for mass and heat transfer was 
improved upon in ref. [2] by considering a non-lineal 
relationship between the heat of solution and concentration. 
This note discusses the addition of a convectton mechanism 
to the model. The presence of a heat source/sink due to the 
heat or solution for solute transfer between stationary and 
partially miscible phases is also considered. Experimental 
data obtained by Yang [3] are used to test the pure diffusion 
and convection/diffusion models. 

Since interfacial activity is generally present in the systems 
under study, this phenomenon can be characterized by the 
v,elocity of the fluid in each phase. In this note. a simple 
approach is considered for the convcctivc mechanism. This 
approach involves finding a fluid velocity, in both phases, 
that produces the best fit of the temperature changes pre- 
dicted by the model when compared to experimental data. 
This modeling work allows us to significantly improve out 
understanding of the phenomena of interfacial activity and 
how it affects the mass and heat transfer rates in such systems. 
This improved understanding will ultimately permit a better 
estimation of mass and heat transfer coefficients in liquid 
extraction systems. 

BASIC MODEL 

The pure diffusion model for partially miscible binary 
systems [2] was extended to consider the transfer of a solute 
between two partially miscible phases. A convcctivc mech- 
anism was also incorporated into the model. The geometrical 
configuration of the experimental conditions consists of a 
cylindrical transfer cell in which two stationary liquid phases 
are placed in contact [2]. This is shown in Fig. I. The lighter 
phase is in the top half of the cell and the heavier phase is in 
the bottom half. These two phases arc separated by an mtcr- 
fact defined at : = 0. and they are contacted by smoothly 
and slowly rotating the upper half of the transfer cell. The 
overall system contains three components. 1, 2, and 3. which 
form two phases A and B. Components I and 2 are the 
solvents, and component 3 the solute which is completely 
miscible in both solvents. After contacting of the two phases, 
components I and 3 will transfer from phase A to phase B. 
and component 2 will transfer from phase B to phase A. 
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Fui. I. Geometrical conliguration 

.Thc convcctlon:dlf‘uslon model can hi: described by the 
following PDEs for mass and heat transfer in each phase : 

Derivation ofthis model is described in more detail elscwhcrc 
? 

141. cz\. c ,.,r C,I,, and C,, represent the molar conccntra- 
lions of components 2 and 3 in phase A. and compon- 
ents 1 and 3 in phase B, respectively. C,,, and C2,1 can bc 
obtained from the condition that the sum of mole fractions 
in each phase is equal to one. VA and k’H represent the net 
fluid velocities in the axial direction due to convection in 
phases A and B. respectively. Velocity fields in other dircc- 
tions arc neglected in this initial work T represents the 
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temperature ditf’erence between the actual value and the 
initial condition; HE the heat of solution of the ternary 
system ; and X,, the mole fraction of component i in phase 

.i. 

Initial condition 

t = 0, GA = CZAE, z 3 0 (7) 

t = 0, c,, = C3*r, z > 0 (8) 

t = 0, c,, = C,BE, z < 0 (9) 

t = 0, Ci” = G”,, Z40 (10) 

t = 0, r, = 0, Z>O (11) 

t = 0, T” = 0, z < 0. (12) 

Boundary conditions 

3 = L. 7; = 0, r>o (13) 

Z = L, G* = C2I\r, t > 0 (14) 

Z = L, c,, = c,,,, t > 0 (15) 

-_= -L, T*=O, f>O (16) 

Z = -L, c,, = C,“,, t > 0 (17) 

2=-L, &=C&, t>o (18) 

Z = 0. T, = 7-r,, 1 > 0. (19) 

The liquids in a very thin layer close to the interface are 
assumed to be very well mixed immediately after the con- 
tacting takes place. Therefore, instantaneous equilibrium is 
assumed at the interface. Interfacial concentrations can be 
determined from the equilibrium phase diagram of the ter- 
nary systems [5]. In this preliminary work the equilibrium 
concentrations are assumed independent of temperature 

2 = 0, Cz* = c,,,, I > 0 (20) 

s=o, &=&,, I>0 (21) 

-_=o, C,,=C,,,, t>o (22) 

Z = 0, C,” = CX8,, t > 0. (23) 

The total length or depth of each liquid phase is represented 
by L. The concentrations with a subscript I represent a con- 
dition at the interface, and those with a subscript E represent 
a condition at a distance L from the interface. The last 
boundary condition represents the condition of equality of 
energy fluxes at the interface 

-_=o, r>o 

_k aT, +D 2H: ~CZ, I D aH: 8% 7 
A 2; 

V c (iH: 

ZA ax,, a: 3A ax,, dr A =(:X2A 

(24) 

The pure diffusion and heat conduction model is a special 
case of the above model when both V,, and V, are equal to 
zero. 

The following velocity profiles were used : 

v)j = VA,,,, (I - 1 OOZ) (0 < 3 < 0.01 m) (25) 

v,., = 0 (0.01 m < i < L) (26) 

V, = - VB,,s,(I + 1002) (-0.01 m < 2 < 0) (27) 

v, = 0 (--L < z < -0.01 m). (28) 

The expressions used for the velocity profiles indicate that 
convection effects are confined to an area very close to the 
interface. This is consistent with experimental results [3]. The 
maximum velocities for each phase, V,,,,,, and V,,_, are 

considered equal in magnitude and will be denoted as Y,,,. 
The interfacial movements generated near the interface are 
assumed to propagate towards the bulk, with a resulting net 
velocity of zero at the interface. Therefore, for z = 0 the 
convection/diffusion and pure diffusion models become 
identical. 

METHOD OF SOLUTION 

This mathematical model was numerically solved for vari- 
ous ternary liquid systems using the DSS/2 differential equa- 
tion solver [6]. The PDE differentiator used [7] computes 
derivatives by five-point centered and non-centered approxi- 
mations based on the fourth-order Lagrange interpolation 
polynomial. The work described in this note was performed 
on an IBM PS/2 Model 80 microcomputer. 

A total of 51 grid points were used in each phase for 
implementing the Numerical Method of Lines, with points 
closer together near the interface [4]. The error tolerance 
used for all runs was 10-5. An efficient method for applying 
the boundary conditions [8] was used in the solution of this 
model. 

Due to the lack of concentration-dependent physical prop- 
erty data, the properties of the pure solvent were considered 
representative of each phase. 

SYSTEMS STUDIED 

Three partially miscible ternary liquid systems were used 
for the analysis with the pure diffusion model: (AA sys- 
tem) ethyl acetate( l)-water(2)-acetic acid(3) ; (EE system) 
ethyl acetate(l)-water(2))ethanol(3) ; and (IS system) iso- 
butdnol(l j-water(2)-ethdnol(3). These systems were selec- 
ted because of the avaiiabiiity of experimentai data for tem- 
perature changes as a function of time and position in one 
of the phases [3]. In all cases, component 3 is the solute which 
is miscible in the other two components and is transferred 
between the two partially miscible phases. Temperature and 
concentration profiles were calculated for initial volume per- 
centages of component 3 in phase A of 5, IO, and 33%. In 
addition, for each of these cases both the initially saturated 
and unsaturated conditions were considered. 

When solving the convection/diffusion model, tem- 
perature and concentration profiles were obtained for the 
EE system. 

RESULTS AND ANALYSIS 

Both the pure diffusion and convection/diffusion models 
were solved with the following initial conditions. For the 
unsaturated cases, CZAE = C,,, = 0. For the saturated cases 
the values of C?,,r and C,,, were determined by the mutual 
solubilities of the binary system 12. The value for C3BE was 
always zero and C,,, varied from case to case. The tOd 

length of each phase was L = 0.02 m. 

When a value of zero is used for both velocities VA and 
Vo. this model represents a pure diffusion mechanism for 
mass transfer and pure conduction for heat transfer. A total 
of 18 cases were evaluated (six for each ternary system). 
These included initial volume percentages for component 3 
in phase A of 5, 10, and 33% for both saturated and unsatu- 
rated cases. The temperature changes predicted by the pure 
diffusion model were in qualitative agreement with the exper- 
imental data for the EE and IS systems. The predictions for 
the AA system were less successful due to the density inver- 
sion mechanism taking place during transfer of acetic acid 
from an ethyl acetate to a water-rich phase. The model- 
generated values are normally lower than the experimental 
temperature differences, with the ratio between the two vary- 
ing from 0.1 to 0.8. Quantitative results and a comparison 
between model-generated temperature profiles and exper- 
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nncntal data are reported 1n detail 1n ref. 151. From the resulta 
for these three ternary systems and those obtained for binary 
systems [2] it appears that the disagreement hetwecn the 
model-gencl-ared value\ and ~hc cxper~mental tia~ i\ mainI\ 
due to the lack ot a convcct1ve mechamsm in the model. 

In an ell’ort to improve the prediction of tcmpe1-a!urc 
changes generated upon contact of partially miscible tc1-na1-> 
systems. a convective mechanism was added to Ihc pure 
diffusion model. Since interfacial activity has been noted in 
such systems. the fluid circulation close to the interface nas 
characterized by a fluid velocity in the axial direction. I.inc;ll 
velocity profiles were used ah dcscribcd by cquatlons (IS) 
(2X). The 1naximum fuid \clocilq, L’,,,,,~. was treated ;I\ an 
adjustable parameter by linding the hcqt fit IO (hc a\;11l;thl~~ 
cxpcrimental heat transfer data for ternary l~ywd skstcms 
[7]. This is a simple approach which proved very usrful in 
improving the model-generated temperature changes. Due 
to differences in the physical properties of both phases the 
mnnn;tnA~c ,,I” the fl,,iA ,;rl,,riti~r c,r,~ ,,,, t eunrr-trvl !<) bcz ““‘~“1L”UC” Y1 L,,C ,,uL.. .U.“I.L.wY -._ . ..i. _,.y __.1_ 

equal. However. this assumption was used due to the unavaii- 
ability ofexperimental heat transfer data in one ofthe phases. 
Future work will consider relaxing some of these assump- 
tions to make further improvements in the model and tnakc 
it more realistic. 

The convectionidiffusion model was numerically solved 
for the ethyl acetate(I) water(2)-ethanol(3) system using 
several values for I’,,,,. The optimum value for Vq,,,, was 
determined by minimizing the average deviation between the 
cxpcrmieniai aiid iii&l-prcdicied iemperatui< piGfiiCS. % 

objective function used was the following: 

This objective function was evaluated for the tcmpcrature 
changes measured by the thermocouple closest to the intcr- 
fact (1.4 mm). The calculated and experimental values used 
in the evaluation were sampled at 5 s intervals between 0 and 
2 min after the contacting ofthe phases (11 = 24). The average 
deviation is very sensitive to the value of t’,,;,,. The efTcct of 
the fluid velocity on the prediction of temperature changes. 
in the aqueous phase of the EE system at 1.4 mm from the 
interface. is presented in Fig. 2. The conditions used are an 

g 0.8 

FIG. 2. Effect of lluid velocity on the pl-ediction of tcm- 
perature changes (EE system) : 0, cxperimcntal data 1x1 : 

~~~ . model predictmns. 

initial volume percent of ethanol in an ethyl acctaterlch 
phase of 5% with the two phases mutually saturated bcfore 
the contacting. The case for V,,,,,> = 0.0 corresponds to the 
pure diffusion model. It is evident rhat rhc improvement< iti 
ihc prediction of tcmpcraturc change\ arc significant \\hen 
&ding ;I simple con~cctivc mcchani~m. 

CONCLUSIONS 

,\ conlcctionidilfusion model w;1\ dc\ciopcd 101. the pl.L.- 
diction of temperature and concent1-a1lon p1-oliles uhcn 1 
solute is transferred between two partially m1sciblc pha>c\ 
A linear velocity profile was selected in the region t:iosc to 
the interface. considering that the net tluid movementa ‘UC 
liuc to intcrfacial activity propagated from the interface to 
the bulk. This mathematical model was solved using the 
DSS:? diffcrcntial equation solver. fhc results foi- tern 
peraturc changes with a pure difl‘uslon model were in quali- 
tat1ve agreement with available experimental dalta. Solutmn 

I. .I 01 1ne convectlclli~difusioii iiiodcl iiivoiicd ihC iiJC tif dii 

adjustable parameter in the velocity protilc equation. In this 
case the agreelnent between the cxperimcntal data and I)“- 

dieted values was significantly impro,;ed. This confirms ihe 
existence of both dillhsion and convection mechanisms du: 
ing transfer of a solute in interfaciall> actice liquid sjs1cn1\. 

In order to improve the model. future \+ork in (hia arc<, 
should concentrate on eliminating swm d the majot 
assumptions. Improvements are rcquircd in the following 
areas: (a) use of a time-dependent two-dilllensional vclocit! 
proiiie which takes into account circuiation of rhc iiuid 
(b) consider that equilibrium of the phases is not reached 
instantaneously at the interface: (c) consider equilibrium 
concentrations to be functions of time due to temperature 
dependence: (d) USC of experimental heat of mixing dal:l <)I 
bcltcr predictive methods : and (e) consider conccntrat1on 
and tclnperature dcpendcnce of liquid diiTus1on cocliicieni~ 
and other physical properties. FOI- an cfl‘ectivc Leriiication ol‘ 
the improved lnathematical model. experimcnt;1i data III both 

phases should be acquired. 
The present results provide useful Informatioi~ i’l,r the 

understanding of the effect ofcon\ection during solute tr,ma- 
fer between partially miscible phases. Gt1idelines have been 
provided for future directions of this pork so thal the resuhs 
can significantly enhance our understanding of the phenoni- 
cna of interfacial activity and how it ;~fIicc& 11x1s~ and hca( 
rransfci rates 1n sue 1 svstems. 1 
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INTRODUCTION 

PRASAD et al. [l] recently reported new experimental data 
for the thermal conductivity of liquid-saturated porous beds 
of spheres. They compared their data with three correlation 
formulas proposed by Kunii and Smith [2], Krupiczka [3] 
and Zehner and Schliinder [4], respectively. Each of these 
formulas is quite complicated and contains at least two 
numerical constants which either have been determined 
empirically or are specific to a particular geometry. The 
purpose of this note is to demonstrate a simple correlation 
formula which contains no empirical constants and which 
gives a useful prediction of the thermal conductivity, given 
the values of the porosity E, the fluid conductivity k, and the 
solid conductivity k,. Some other aspects of the results of 
Prasad et al. are also discussed. 

The weighted arithmetic, harmonic and geometric means 
of kr and k,, with weighting factors E and 1 -E, are denoted 
here by kA, k,, and k,, respectively, and are given by 

kA = Ekf+(l --~)k, (1) 

l/k,, = &+(I --E)/k, (2) 

k 
G 

= k”k”m”’ 
II (3) 

Equation (1) gives the apprbpriate overall conductivity if the 
heat conduction in the fluid and solid phases is entirely ‘in 
parallel’. Equation (2) is ;tppropriate if the conduction in 

the fluid and solid phases is entirely ‘in series’. One would 
expect on physical grounds that k, and k, should be upper 
and lower bounds on the overall conductivity k, of the 
medium, since a parallel arrangement should offer the least 
resistance to heat flow and a series arrangement the greatest 
resistance. The geometric mean of two quantities is always 
intermediate in value between the arithmetic and harmonic 
means of those quantities. This suggests that k, may well be 
a good candidate for a correlation formula for a general 
porous medium. 

To test this suggestion, these formulas have been applied 
to the data given in Table 1 of ref. [l], and the results are 
given in our Table 1. For comparison, we have listed in the 
last column the values predicted from the formula of Kunii 
and Smith [2], namely 

where i = k,/k,, a, = I, u, = 2/3, (ii = cp?+4.63(~-0.26) 
x ((p, -up?). and the quantities (p, and (pt. which depend 

on E, can be obtained from a plot in ref. 121. On the criterion 
of smallest root mean square relative error, the Kunii- 
Smith formula is slightly more successful in predicting 
the data of Prasad et al. [l] than the other correlation for- 
mulas mentioned above, namely those of Krupiczka [3] and 
Zehner and Schliinder [4]. 

We see from Table I that k, is reasonably competitive 
with k,, as a predictor of the measured data. Prediction 
becomes difficult when the values of kf and k, are greatly 
different from each other. The root mean square relative 
error for the kc values is 2.8 times that for the kKS values, 
but to balance this disadvantage formula (3) is clearly much 
less complicated than equation (4), so if a quick estimate of 
k,, is required then k, should serve the purpose. Formula (3) 
is not specific to beds of spheres (as are the other correlation 
formulas). It is suggested that formula (3) should be useful 
in estimating the conductivity of general isotropic porous 
media, 

It is true that equation (3) has its limitations, especially 
when i is small. In this situation we see from Tables 1 and 2 
of ref. [I] that the three correlations represented in ref. [l] 
are capable ofpredicting the thermal conductivity quite accu- 
rately, whereas our equation (3) leads to an overprediction 
for each of the systems glycol/steel (Medium 5 in our Table 
1). water/steel (for which Table 3 of ref. [l] lists a measured 
value of 4.653 whereas equation (3) gives 7.61) and water/ 

Table 1. Data based on Table 1 of ref. [l]. The values of E, k,, 3. and k KS, and the measured values of 
conductivity, are those given in that table. The values for k, have been computed from the two previous 

columns. The values of k,, kEl and k, have been computed from equations (I), (2) and (3), respectively 

Medium E k E. = kdk, kf kA k, kc Measured k,, 

1 water/glass 0.396 1.10 0.560 0.616 0.908 0.839 0.874 0.837 0.83 1 
2 water/glass 0.425 1.10 0.562 0.618 0.894 0.824 0.860 0.842 
3 glycol/glass 

0.810 
0.349 1.10 0.235 0.259 0.806 0.515 0.664 0.559 

4 glycol/glass 
0.656 

0.427 1.10 0.235 0.259 0.741 0.460 0.593 0.597 
5 glycol/steel 

0.555 
0.416 37.39 0.007 0.262 21.940 0.623 4.746 2.584 

6 glycol/acrylic 
2.167 

0.402 0.16 1.630 0.261 0.201 0.189 0.195 0.221 
7 water/acrylic 

0.206 
0.427 0.16 3.937 0.630 0.361 0.235 0.287 0.479 0.371 


