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INTRODUCTION

INTERFACIAL activity generated between partially miscible
liquids in some industrial systems can be responsible for
significant enhancements in mass transfer rates. Considering
that thermal effects can be important in the generation of
interfacial activity, Perez de Ortiz and Sawistowski [1] pro-
posed a diffusion model for obtaining temperature and con-
centration profiles as a function of time when partially mis-
cible binary liquids are contacted at a planar interface. They
obtained an analytical solution for temperature and con-
centration profiles in both phases when considering a linear
variation of the heat of solution with concentration. This
coupled diffusion model for mass and heat transfer was
improved upon in ref. [2] by considering a non-linear
relationship between the heat of solution and concentration.
This note discusses the addition of a convection mechanism
to the model. The presence of a heat source/sink due to the
heat ot solution for solute transfer between stationary and
partially miscible phases is also considered. Experimental
data obtained by Yang [3] are used to test the pure diffusion
and convection/diffusion models.

Since interfacial activity is generally present in the systems
under study, this phenomenon can be characterized by the
velocity of the fluid in each phase. In this note, a simple
approach is considered for the convective mechanism. This
approach involves finding a fluid velocity, in both phases.
that produces the best fit of the temperature changes pre-
dicted by the model when compared to experimental data.
This modeling work allows us to significantly improve our
understanding of the phenomena of interfacial activity and
how itaffects the mass and heat transfer rates in such systems.
This improved understanding will ultimately permit a better
estimation of mass and heat transfer coefficients in liquid
extraction systems.

BASIC MODEL

The pure diffusion model for partally miscible binary
systems [2] was extended to consider the transfer of a solute
between two partially miscible phases. A convective mech-
anism was also incorporated into the model. The geometrical
configuration of the experimental conditions consists of a
cylindrical transfer cell in which two stationary liquid phases
are placed in contact [2]. This is shown in Fig. 1. The lighter
phase is in the top half of the cell and the heavier phase is in
the bottom half. These two phases are separated by an inter-
face defined at - = 0, and they are contacted by smoothly
and slowly rotating the upper half of the transfer cell. The
overall system contains three components. 1, 2, and 3. which
form two phases A and B. Components 1 and 2 are the
solvents, and component 3 the solute which is completely
miscible in both solvents. After contacting of the two phases,
components 1 and 3 will transfer from phase A to phase B,
and component 2 will transfer from phase B 10 phase A.
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The convection/diffusion model can be described by the
following PDEs for mass and heat transfer in cach phase:
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Derivation of this model is described in more detail elsewhere
[4]. Can. Cias Cig. and Cyp represent the molar concentra-
tions of components 2 and 3 in phase A. and compon-
ents 1 and 3 in phase B, respectively. C;, and .y can be
obtained from the condition that the sum of mole fractions
in each phase is equal to one. V, and ¥, represent the net
fluid velocities in the axial direction due to convection in
phases A and B, respectively. Velocity fields in other direc-
tions are neglected in this initial work. T represents the
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value and the

the actual

temperature difference between
initial condition; HE the heat of solution of the ternary
system; and X,; the mole fraction of component / in phase

5

Initial condition

=0, Cpn=Cupge, 220 @)
=0, Ca=Cupe, 220 8
t=0, Cig=Cpe, 250 9)
=0, Cy=0Cupe, 2590 (10)
=0, Toa=0, z20 (1)
t=0, Tyg=0, z<0. (12)
Boundary conditions
z=1L Ta =0, i>0 (13)
z=1, Cip = Copp, >0 (14)
z=1L, Cia = Cipg, t>0 (15)
z=—L, Tg=0, t>0 (16)
z=—L, Cya=Cpe >0 amn
z=—L, Cyg=Cuygs >0 (18)
z=0. Ta=Ts (>0 (19)

The liquids in a very thin layer close to the interface are
assumed to be very well mixed immediately after the con-
tacting takes place. Therefore, instantaneous equilibrium is
assumed at the interface. Interfacial concentrations can be
determined from the equilibrium phase diagram of the ter-
nary systems [5]. In this preliminary work the equilibrium
concentrations are assumed independent of temperature

z2=0, Coua=Cupy, >0 (20
z=0, Cp=Ciy, (>0 (21)
z=0, Cyg=Cyg, t>0 (22)
- — 0 g — ¢~ 0N o3
z=0, Cp=0Lsg, >0 (23}

The total length or depth of each liquid phase is represented
by L. The concentrations with a subscript I represent a con-
dition at the interface, and those with a subscript E represent
a condition at a distance L from the interface. The last
boundary condition represents the condition of equality of

energy fluxes at the interfacc
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(24)
The pure diffusion and heat conduction model is a special
case of the above model when both V, and Vy are equal to
Zero.
The following velocity profiles were used :

Vi = Vamn(1—1002) (0 <z < 0.0l m) (25)
Va=0 (00Im<z<L) (26)
Ve = — Vama{1+1002) (=00l m < z < 0) 27
V=0 (—L<z<—00lm). (28)

The expressions used for the velocity profiles indicate that
convection effects are confined to an area very close to the
interface. This is consistent with experimental results [3]. The
maximum velocities for each phase, V. and V... are
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considered equal in magnitude and will be denoted as V...
The mterfamal movements generated near the interface are
assumed to propagate towards the bulk, with a resulting net
velocity of zero at the interface. Therefore, for z = 0 the
convection/diffusion and pure diffusion models become

identical.

METHOD OF SOLUTION

This mathematical model was numerically solved for vari-
ous ternary liguid systems using the DSS/2 differential equa-
tion solver [6]. The PDE differentiator used [7] computes
derivatives by five-point centered and non-centered approxi-
mations based on the fourth-order Lagrange interpolation
polynomial. The work described in this note was performed
on an IBM PS/2 Model 80 microcomputer.

A total of 51 grid points were used in each phase for
implementing the Numerical Method of Lines, with points
closer together near the interface [4]. The error tolerance
used for all runs was 10>, An efficient method for applying
the DOUHUAIy conditions [o] was used in the solution of this
model.

Due to the lack of concentration-dependent physical pro

id

ertv data. the nronerties of the nure solvent were consi

rty data, the properties of the pure solvent

representative of each phase.

OSYDIEIVIS SIUDIED

Three partially miscible ternary liquid systems were used
for the analysis with the pure diffusion model: (AA sys-
tem) ethyl acetate(l)-water(2)-acetic acid(3); (EE system)
ethyl acetate(l)-water(2)—ethanol(3); and (IS system) iso-
butanol(l)-water(2)—ethanol(3). These systems were selec-
ted because of the availability of experimentai data for tem-
perature changes as a function of time and position in one
of the phases [3]. In all cases, component 3 is the solute which
is miscible in the other two components and is transferred
between the two partially miscible phases. Temperature and
concentration profiles were calculated for initial volume per-
centages of component 3 in phase A of 5, 10, and 33%. In
addition, for each of these cases both the initially saturated
and unsaturated conditions were considered.

When solving the convection/diffusion model, tem-
perature and concentration profiles were obtained for the
EE system.

RESULTS AND ANALYSIS

Both the pure diffusion and convection/diffusion models
were solved with the following initial conditions. For the
unsaturated cases, Coag = Cigg = 0. For the saturated cases

the values of C,g and C g were determined by the mutual
solubilities of the binary system 12. The value for Cyy; was

1DlIlies Ol 1ne bina stem AUE 10T Lge

always zero and Ciag varled from case to case. The total
length of each phase was L = 0.02 m.

Pure diffusion model

When a value of zero is used for both velocities ¥, and
Vg, this model represents a pure diffusion mechanism for
mass transfer and pure conduction for heat transfer. A total
of 18 cases were evaluated (six for each ternary system).
These included initial volume percentages for component 3
in phase A of 5, 10, and 33% for both saturated and unsatu-
rated cases. The temperature changes predicted by the pure
diffusion model were in qualitative agreement with the exper-
imental data for the EE and IS systems. The predictions for
the AA system were less successful due to the density inver-
sion mechanism taking place during transfer of acetic acid
from an ethyl acetate to a water-rich phase. The model-
generated values are normally lower than the experimental
temperature differences, with the ratio between the two vary-
‘ing from 0.] to 0.8. Quantitative results and a comparison
between modei-generated temperature profiles and exper-
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imental data are reported in detail in ref. [5). From the results
for these three ternary systems and those obtained for binary
systems [2] it appears that the disagreement between the
model-generated values und the experimental data is mamly
duc to the lack of a convective mechanism in the model.

Convection/diffusion model

In an effort to improve the prediction of temperature
changes generated upon contact of partially miscible ternary
systems, a convective mechanism was added to the pure
diffusion model. Since interfacial activity has been noted in
such systems, the fluid circulation close to the interface was
characterized by a fluid velocity in the axial direction. Lincar
velocity profiles were used as described by equations (23)
(28). The maximum fluid velocity, ¥,... was treated as an
adjustable parameter by finding the best fit to the available
experimental heat transfer data for ternary liquid systems
[3]. This is a simple approach which proved very useful in
improving the model-generated temperature changes. Due
to differences in the physical propertics of both phases the
magnitudes of the fluid velocities are not expected to be
equal. However, this assumption was used due to the unavail-
ability of experimental heat transfer data in onc of the phases.
Future work will consider relaxing some of these assump-
tions to make further improvements in the model and makc
it more realistic.

The convection/diffusion model was numerically solved
for the ethyl acetate(l)-water(2)—ethanol(3) sysiem using
several values for V.. The optimum value for V,, was
determined by minimizing the average deviation between the
experimental and model-predicted temperature profiles. The
objective function used was the following :

Avg. deviation = ’/ ! i (T, T, )) (29)
. \/ n) ks Lo )™ )
This objective function was evaluated for the temperature
changes measured by the thermocouple closest to the inter-
face (1.4 mm). The calculated and experimental values used
in the cvaluation were sampled at 5 s intervals between 0 and

2 min after the contacting of the phases (n = 24). The average

deviation is very sensitive to the value of V.. The effect of

the fluid velocity on the prediction of temperature changes,
in the aqueous phase of the EE system at 1.4 mm from the
interface. is presented in Fig. 2. The conditions used are an
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FiG. 2. Effect ol fluid velocity on the prediction of tem-
perature changes (EE system): O, experimental data [3]:
. model predictions.
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initial volume percent of ethanol in an ethyl acctate-rich
phase of 5% with the two phases mutually saturated before
the contacting. The case for V,,, = 0.0 corresponds to the
pure diffusion model. It is evident that the improvements in
the prediction of temperature changes are significant when
adding a simple convective mechanism.

CONCLUSIONS

A convection/diffusion model was developed for the pre-
diction of temperature and concentration profiles when a
solute is transferred between two partially miscible phases.
A linear velocity profile was selected in the region close to
the interface, considering that the net tluid movements arc
due to interfacial activity propagated from the interface to
the bulk. This mathematical model was solved using the
DSS/2 differential equation solver. The results for tem-
perature changes with a pure diffusion model were in quali-
tative agreement with available prerimcnml data. Solulinn
()l ll’lL LOth‘Ll]()I]’UlllU\lUll Ill()ULl 11"1'\/‘01'\'((1 UIL Lse Ul an
adjustable parameter in the velocity profile equation. In this
case the agreement between the experimental data and pre-
dicted values was significantly improved. This confirms the
existence of both diffusion and convection mechanisms dur-
ing transfer of a solute in interfacially active liquid sysiems.

In order to improve the model. future work in this arca
should concentrate on climinating some of the major
assumptions. Improvements are required in the following
arcas: (a) use of a time-dependent two-dimensional velocity
profile which takes into account circulation of the fluid:
(b) consider that equilibrium of the phases is not reached
instantaneously at the interface: (¢) consider equilibrium
concentrations to be functions of time due to temperature
dependence ; (d) use ol experimental heat of mixing data or
better predictive methods: and (¢) consider concentration
and temperature dependence of liquid diffusion coetlicients
and other physical properties. For an effective verification of
the improved mathematical model, experimentai data in both
phases should be acquired.

The present results provide useful information for the
understanding of the effect of convection during solute trans-
fer between partially miscible phases. Guidelines have been
provided for future directions of this work so that the results
can significantly enhance our understanding of the phenon-
ena of interfacial activity and how it affects mass and heal
transfer rates in such systems.
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INTRODUCTION

PrASAD er al. [1] recently reported new experimental data
for the thermal conductivity of liquid-saturated porous beds
of spheres. They compared their data with three correlation
formulas proposed by Kunii and Smith [2], Krupiczka [3]
and Zehner and Schliinder [4], respectively. Each of these
formulas is quite complicated and contains at least two
numerical constants which either have been determined
empirically or are specific to a particular geometry. The
purpose of this note is to demonstrate a simple correlation
formula which contains no empirical constants and which
gives a useful prediction of the thermal conductivity, given
the values of the porosity ¢, the fluid conductivity k; and the
solid conductivity k,. Some other aspects of the results of
Prasad et al. are also discussed.

The weighted arithmetic, harmonic and geometric means
of k¢ and k,, with weighting factors ¢ and 1-¢, are denoted
here by k,, ky and kg, respectively, and are given by

ka = eki+ (1 —e)k, (1
Vky = glk:+(1—e)/k, )
kg = kikl'=9, 3

Equation (1) gives the apprbpriate overall conductivity if the
heat conduction in the fluid and solid phases is entirely ‘in
parallel’. Equation (2) is appropriate if' the conduction in
the fluid and solid phases is entirely ‘in series’. One would
expect on physical grounds that k, and &;; should be upper
and lower bounds on the overall conductivity &, of the
medium, since a parallel arrangement should offer the least
resistance to heat flow and a series arrangement the greatest
resistance. The geometric mean of two quantities is always
intermediate in value between the arithmetic and harmonic
means of those quantities. This suggests that k; may well be
a good candidate for a correlation formula for a general
porous medium.

To test this suggestion, these formulas have been applied
to the data given in Table 1 of ref. [1], and the results are
given in our Table 1. For comparison, we have listed in the
last column the values predicted from the formula of Kunii
and Smith [2], namely

a,(l—¢

kys = kr|:3+ a‘l%] )
where A =kk, a, =1, a»=2/3, a,=¢,+4.63(6—0.26)
x(¢,—,). and the quantities ¢, and ¢,. which depend
on ¢, can be obtained from a plot in ref. |2). On the criterion
of smallest root mean square relative error, the Kunii-
Smith formula is slightly more successful in predicting
the data of Prasad ef al. [1] than the other correlation for-
mulas mentioned above, namely those of Krupiczka [3] and
Zchner and Schliinder {4].

We see from Table 1 that kg is reasonably competitive
with kys as a predictor of the measured data. Prediction
becomes difficult when the values of k; and k, are greatly
different from each other. The root mean square relative
error for the k; values is 2.8 times that for the &y values,
but to balance this disadvantage formula (3) is clearly much
less complicated than equation (4), so if a quick estimate of
kn is required then k¢ should serve the purpose. Formula (3)
is not specific to beds of spheres (as are the other correlation
formulas). It is suggested that formula (3) should be useful
in estimating the conductivity of general isotropic porous
media,

It 1s true that equation (3) has its limitations, especially
when A is small. In this situation we see from Tables 1 and 2
of ref. [1] that the three correlations represented in ref. [1]
are capable of predicting the thermal conductivity quite accu-
rately, whereas our equation (3) leads to an overprediction
for each of the systems glycol/steel (Medium 5 in our Table
1), water/steel (for which Table 3 of ref. [1] lists a measured
value of 4.653 whereas equation (3) gives 7.61) and water/

Table [. Data based on Table 1 of ref. [1). The values of ¢, k,, 4 and kys, and the measured values of
conductivity, are those given in that table. The values for k, have been computed from the two previous
columns. The values of k,, kyy and k¢ have been computed from equations (1), (2) and (3), respectively

Medium 13 ke A= kik, k¢ ka ky kg  Measured  kgq
[ water/glass 0.396  1.10 0.560 0.616 0908 0.839 0.874  0.837 0.831
2 water/glass 0.425 1.10 0.562 0618 0.894 0.824 0.860 0.842  0.810
3 glycol/glass 0.349  1.10 0.235 0.259 0.806 0.515 0.664 0.559 0.656
4 glycol/glass 0427 110 0.235 0.259 0.741 0460 0.593 0.597  0.555
5 glycol/steel 0416 37.39 0.007 0.262 21940 0.623 4.746 2.584 2.167
6 glycol/acrylic 0402 0.16 1.630 0.261 0201 0.189 0.195 0.221 0.206
7 water/acrylic 0427 0.16 3.937 0.630 0.361 0.235 0.287 0479 0371




